Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel
نویسندگان
چکیده
منابع مشابه
effect of sub-grid scales on large eddy simulation of particle deposition in a turbulent channel flow
چکیده ندارد.
15 صفحه اولSurfactant-induced electroosmotic flow in microfluidic capillaries.
Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high-throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric-based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring chang...
متن کاملEffect of analyte adsorption on the electroosmotic flow in microfluidic channels.
The predictability and constancy over time of the electroosmotic flow in microchannels is an important consideration in microfluidic devices. A common cause for alteration of the flow is the adsorption of analytes to channel walls, for example, during capillary electrophoresis of proteins. It is shown that certain experimental data, published by Towns and Regnier (Towns, J. K; Regnier, F. E. An...
متن کاملSolute Dispersion by Electroosmotic Flow in Nonuniform Microfluidic Channels
Introduction Dispersion is a phenomenon that determines the resolution of several types of liquid phase chromatography, and is an important component of overall transport through electrokinetic flow systems. The severe dispersion of solute as it travels through a U-turn, for example, has attracted recent attention for this reason [1]. In “ideal” electroosmotic flow through uniform, straight cha...
متن کاملMultiple open-channel electroosmotic pumping system for microfluidic sample handling.
The development of a novel, fully integrated, miniaturized pumping system for generation of pressure-driven flow in microfluidic platforms is described. The micropump, based on electroosmotic pumping principles, has a multiple open-channel configuration consisting of hundreds of parallel, small-diameter microchannels. Specifically, pumps with microchannels of 1-6 microm in depth, 4-50 mm in len...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanotechnology
سال: 2017
ISSN: 0957-4484,1361-6528
DOI: 10.1088/1361-6528/aa734f